A distortion-minimizing rate controller for wireless multimedia sensor networks

نویسندگان

  • Scott Pudlewski
  • Tommaso Melodia
چکیده

The availability of inexpensive CMOS cameras and microphones that can ubiquitously capture multimedia content from the environment is fostering the development of wireless multimedia sensor networks (WMSNs), i.e., distributed systems of wirelessly networked devices that can retrieve video and audio streams, still images, and scalar sensor data. A new cross-layer rate control scheme for WMSNs is introduced in this paper with a twofold objective: (i) maximize the video quality of each individual video stream; (ii) maintain fairness in the domain of video quality between different video streams. The rate control scheme is based on analytical and empirical models of video distortion and consists of a new cross-layer control algorithm that jointly regulates the end-to-end data rate, the video quality, and the strength of the channel coding at the physical layer. The end-to-end data rate is regulated to avoid congestion while maintaining fairness in the domain of video quality rather than data rate. Once the end-to-end data rate has been determined, the sender adjusts the video encoder rate and the channel encoder rate based on the overall rate and the current channel quality, with the objective of minimizing the distortion of the received video. Simulations show that the proposed algorithm considerably improves the received video quality with respect to state-of-the art rate control algorithms, without sacrificing on fairness. 2010 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fuzzy Based Approach for Rate Control in Wireless Multimedia Sensor Networks

Wireless Multimedia Sensor Networks (WMSNs) undergo congestion when a link (or a node) becomes overpopulated in terms of incoming packets. In WMSNs this happens especially in upstream nodes where all incoming packets meet and directed to the sink node. Congestion in networks, if not handled properly, might lead to congestion collapse which deteriorates the quality of service (QoS). Therefore, i...

متن کامل

An Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach

Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...

متن کامل

Representing a Model for Improving Connectivity and Power Dissipation in Wireless Networks Using Mobile Sensors

Wireless sensor networks are often located in areas where access to them is difficult or dangerous. Today, in wireless sensor networks, cluster-based routing protocols by dividing sensor nodes into distinct clusters and selecting local head-clusters to combine and send information of each cluster to the base station and balanced energy consumption by network nodes, get the best performance ...

متن کامل

Representing a Model for Improving Connectivity and Power Dissipation in Wireless Networks Using Mobile Sensors

Wireless sensor networks are often located in areas where access to them is difficult or dangerous. Today, in wireless sensor networks, cluster-based routing protocols by dividing sensor nodes into distinct clusters and selecting local head-clusters to combine and send information of each cluster to the base station and balanced energy consumption by network nodes, get the best performance ...

متن کامل

A Priority-based Routing Algorithm for Underwater Wireless Sensor Networks (UWSNs)

Advances in low-power electronics design and wireless communication have enabled the development of low cost, low power micro-sensor nodes. These sensor nodes are capable of sensing, processing and forwarding which have many applications such as underwater networks. In underwater wireless sensor networks (UWSNs) applications, sensors which are placed in underwater environments and predicted ena...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Communications

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2010